Оптимизация промтов для LLM: как добиться лучших результатов
Однако не стесняйтесь продолжать пробовать с различными формулировками или перспективами. Методы смены ролей, управления беседой и постоянного анализа помогают раскрыть потенциал нейросетей максимально полно. Все эти приемы — не догма, а скорее отправная точка для ваших экспериментов. Промпт-инжиниринг — молодая и быстро развивающаяся область, где всегда есть место для новых находок и решений. RNN построены вокруг скрытого вектора состояния, который действует как блок памяти для хранения информации об обрабатываемой последовательности. Языковые модели с их способностью понимать, синтезировать и даже воспроизводить человеческий язык легли в основу новаторских приложений, влияющих на наш цифровой опыт. https://www.ozodagon.com/index.php?subaction=userinfo&user=SEO-Wizardry Языковые модели привлекли внимание всего мира и произвели революцию в том, как люди взаимодействуют с машинами в постоянно меняющемся мире технологий. Например, vLLM, о которой рассказывали в статье, или другие популярные. Для работы с LLM лучше всего подходит Linux — операционная система поддерживает NVIDIA Collective Communications. Модель может работать и на Windows, но ее техническая документация будет хуже.
Нейросеть в бизнесе. Блог Юрия Горбачева
- Это похоже на разговор с человеком, который пытается объяснить квантовую физику, прочитав только википедию.
- Изучая и обрабатывая эти данные, языковые модели учатся предвосхищать следующее слово во фразе, создавать хорошо организованные абзацы и даже вести интеллектуальные разговоры.
- Этот набор задач был создан совместными усилиями 444 авторов из 132 институтов и представляет собой важный ресурс для проверки и сравнения LLM на различных сложных задачах.
- Однако и эта модель имеет ограничения, так как может обрабатывать только фиксированное количество предыдущих слов.● Рекуррентные нейронные сети (RNN).
- Здесь она вбирает базовую эрудицию и знания о естественном языке, но пока еще умеет понимать запросы и не может на них отвечать.
Представьте, что ведете беседу с экспертом по языковому моделированию. Можно даже присвоить виртуальному собеседнику профессиональный профиль — например, "Дмитрий, специалист по генерации текста". Такой подход помогает естественно структурировать входные данные и улучшать качество обучения модели. OpenChat 3.5 — мультиязычная модель с открытым исходным кодом, обученная на множестве данных с различных языков, включая русский.
Как работают языковые модели
Подробнее о подходе RAG можно прочитать на странице доков HuggingFace, недавно на Хабре вышла статья о русскоязычном помощнике, построенном на базе трансформерной модели Saiga (saiga_mistral_7b_lora). С помощью Fine-tuning мы влияем на саму большую языковую модель, так как она дообучается на специфичных для решаемой задачи данных. Исследования в этой области продолжаются, и сообщество разработчиков активно работает над тем, чтобы устройство CoT prompting стало еще более гибким и масштабируемым. Количество публикаций и исследований в этом направлении растет, что значительно способствует ускорению процесса внедрения данной технологии в реальные проекты и продукты. Эта модель представляет собой простую нейронную сеть, которая предсказывает следующее слово на основе фиксированного числа предыдущих слов. FNNLM улучшает традиционные n-граммные модели за счёт использования скрытых слоёв, которые позволяют модели лучше улавливать зависимости в данных. Однако и эта модель имеет ограничения, так как может обрабатывать только фиксированное количество предыдущих слов.● Рекуррентные нейронные сети (RNN). В отличие от FNNLM, рекуррентные нейронные сети способны учитывать произвольное количество предыдущих слов благодаря их архитектуре, которая включает в себя циклические соединения. Это позволяет моделям RNN учитывать долгосрочные зависимости в тексте, что существенно повышает качество генерации и понимания текста.● LSTM и GRU. Эти усовершенствованные версии RNN были разработаны для решения проблемы исчезающего градиента, что делало обычные RNN менее эффективными при обучении на длинных последовательностях. В будущем, с развитием технологий NLP, можно ожидать появления ещё более точных и производительных языковых моделей, которые смогут решать задачи на ещё более высоком уровне. Лучшими моделями для ведения диалога оказались YandexGPT, GigaChat и Saiga-Mistral-7b-Lora, благодаря их способности точно поддерживать контекст. Лучшими моделями для точных и кратких ответов на вопросы стали YandexGPT и Saiga-Llama3-8b. Непрерывный прогресс в создании языков позволит получать более реалистичные и https://aiimpacts.org похожие на человека результаты, расширяя границы того, чего могут достичь языковые модели. Подходы к обобщению текста используют языковые модели для сжатия огромных объемов информации в краткие и полезные резюме. В результате они могут создавать текст, соответствующий стилю и содержанию обучающих данных. Благодаря параллельному интенсивному использованию процессов внутреннего внимания конструкция преобразователя позволяет модели изучать сложные корреляции между входными и выходными последовательностями. Особенно если речь идёт о важных решениях или требуется фактическая точность. Используйте перепроверку через надёжные источники, запрашивайте у модели обоснования и не стесняйтесь уточнять детали. Также, вы можете воспользоваться пятью способами улучшения ответов, приведенными ниже. https://www.pinterest.com/organic-jump/ Другой серьезной проблемой является дезинформация, поскольку языковые модели могут предоставлять убедительную, но неточную информацию, что способствует распространению фальшивых новостей. В этой статье мы показываем работающие кейсы и синергию подходов, реализованных нами в рамках разработки агента вопросно ответной системы - FractalGPT QA агента. В частности, с помощью алгоритма Fractal answer synthesis и интерпретируемого ИИ нам удается существенно снизить % галлюцинаций и стабильно сильно повысить точность и полноту ответов. FractalGPT QA агента доступен в закрытой бете, запрос на тест QA системы по базе знаний можно оставить тут. Также важно знать, что маленькие изменения в заданиях могут сильно изменить результат работа ChatGPT.